

Countering Weapons of Mass Destruction

Dr. Gregory F. Simonson OASD(NCB/NM)

NDIA Disruptive Technologies Conference
November 8-9, 2011
Washington, DC

CWMD PSC Membership

NCB/NM Greg Simonson (Chair)

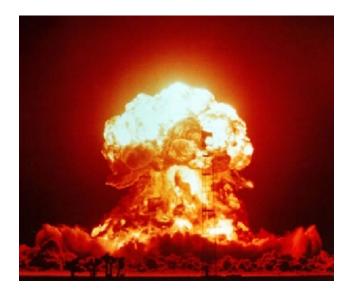
NCB/NM Michaela Eddy

Joint Staff Leonard Izzo

Army Eric Zimmerman

Navy William Thompson

Air Force Mark Fagan


OUSD(P) Jessica Cox

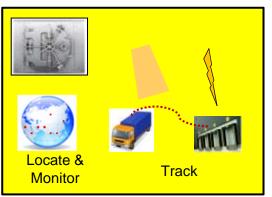
OUSD(I) Michael Spence

DTRA Tony Pang

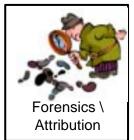
DTRA Stephanie Vaughn

JASONs

"We must ensure that terrorists never acquire a nuclear weapon. This is the most immediate and extreme threat to global security."


President Obama, Prague, Czech Republic, April 5, 2009

Scope of CWMD Challenge Problem



Challenge Problem

Systems Performance Goals

- Broad Area Search
- Persistent Monitoring
- Tagging and Tracking

Technical Challenges

- Systems Integration
- Activity Recognition
- Advanced Signature Detection & Tracking
- Advanced Radiation Detection

CWMD Problem Statement

Scenario: Imminent theft of nuclear weapon from a foreign storage facility by terrorist cell with insider assistance

- The U.S. needs improved capability to deal with a potential future "loose nuke" emergency involving a foreign nuclear weapon or significant amount of special nuclear material (SNM)
 - Earlier cue that a plot is afoot or a theft has occurred
 - Faster access to the area
 - Improved monitoring ability and TTL
 - Higher confidence in containment and search
- Radiation detectors alone will not solve the problem
 - Persistent range constraint; emplacement; shielding...
- ISR technologies, lower latency, networks of networks, and social media may be part of the solution

What S&T investments are central to loose nuke problem and in what architecture would new technologies be deployed?

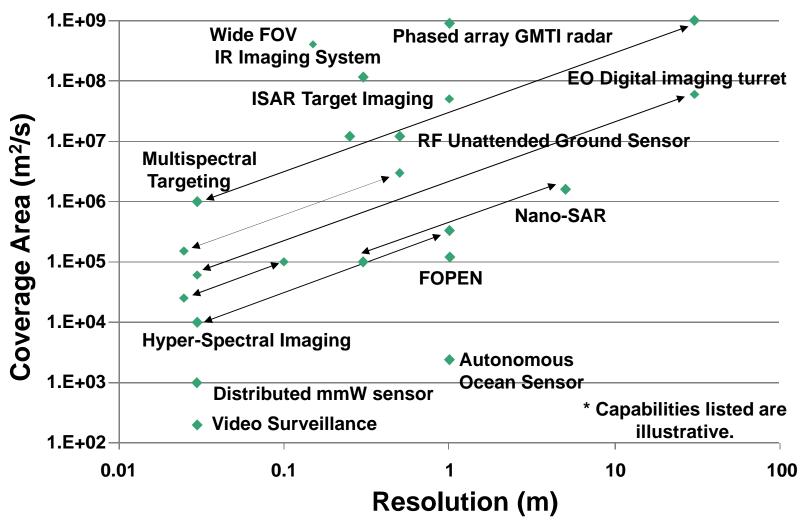
Loose Nukes Parameter Space

	Technical Challenge	Objectives	Technical Approach
3-5 years	Existing data fusion	CWMD community in complete concert	Global CWMD Analysis System; sensor fusion
5-7 years	Alternate signature exploitation	Locate, monitor and track WMD at strategic distances	HSI, IR, FTIR, GPS, radar, lidar, RFID, nanoparticles, etc.
7-10+ years	All-source Information Integration	Pre-event cues, real-time activity detection	Net-networks; beyond physics sensing

Parameter Space: Signatures

Target Class: Vehicle

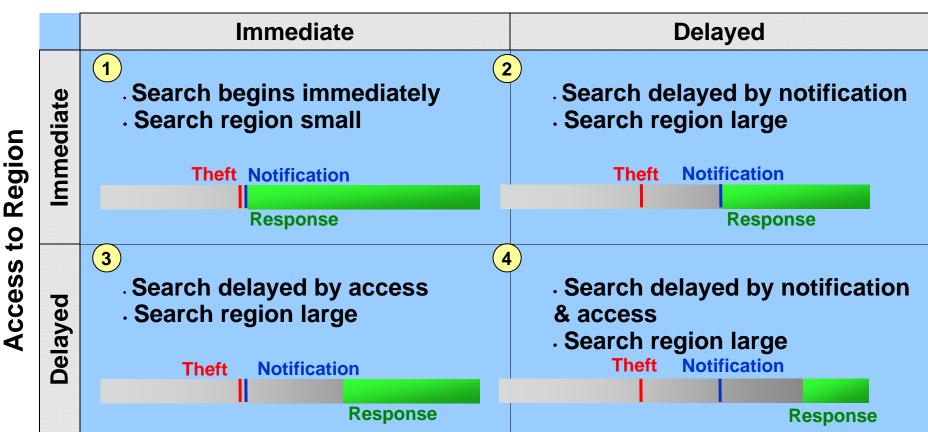
Sub-Class: Passenger Car, Light Truck, Heavy Truck, APC, Tank


Observable	Signature	Sensor
color	absorbance	HSI
material	reflectance	HSI
heat	thermal gradient	IR
chem emission	hydrocarbons	FTIR/chem
size	pixels/return/reference scale	EO/radar
motion	doppler/angular change/GMTI/GPS*	Radar/lidar/FMV
weight	seismic/magnetic	geophone/accelerometer/ magnetometer
sound	acoustic/seismic	microphone/accelerometer
Location	Georeference/GPS	EO/SIGINT
EM	EM	EM (inductive/capacitive)
RF	RF	RFI/DF

And similar sets for payloads, people, facilities, sites...

Parameter Space: Sensors

Source: The Technical Cooperation Program


Parameter Space: Architecture

Ind

Increasing Level of Difficulty

Notification of "Theft"

 Delays in response to theft (caused by late notification or access) increase the "level of difficulty" in recovering SNM

Technical Challenges & Metrics

• Confidence in genning a cue	•	Confidence	in getting a cue
-------------------------------	---	------------	------------------

- Sense change in SNM/NW state
- SNM rad detection (m)
- Alt signature readiness
- Sensor deployment latency
- Sensor handoff
- Data/network fusion
- Persistent surveillance (km²)
- Tracking confidence
- Broad area search (km²/hr)
- Behavior/intent detection
- Social network exploitation
- Architecture maturity

Today	iu yis
<10%	>>50%

10 vre

Low High

Today

<10 100

Fair Good

days <hour

Poor Perfect

<10%? 100%

100s 10,000s

Low High

<10 1,000s

Low High

<10% >>50%

Low High

Notional

CWMD "Loose Nukes" Roadmap

Needed Operational Capabilities

Pre-Positioned Assets, Intel Fusion, Cue, Containment, Locate, Recover

Technology Development Areas

Rad Detection Persistent Monitoring/ISR TTL BAS Intent/Behavior Architecture

Science and Technology Development

FY 15-17 FY 17-19 FY 19-22+

Systems Integration Advanced Signature Detection All-Source Information Integration

Activity Recognition Advanced Tracking Advanced Signature Detection and Tracking

Integration of all-source intel and human reasoning, multi-sensor data fusion, pathway analysis, automated behavioral analysis

HSI, IR, FTIR, radar, lidar, RF, FMV, GPS, accelerometers, RFID, reduced data latency, **network fusion**

Integration algorithms, matrixed detectors, networks of networks, beyond physics: social network analysis, automated all-source information fusion

Revolving integration, demonstration and transition to meet operational needs

Note: These are not currently funded initiatives

Big Gaps: Opportunities for NDIA

- Next gen rad detection, e.g. nanomaterials; ionized air; HSI
- Alternate signatures related to weapon activity
 - People, programs, communications, facilities, behaviors...
- Persistent intelligence, surveillance and reconnaissance
 - Sensor development and platform integration
 - Technical, intelligence and social data fusion
- Data-to-Decision Tools
 - Next-generation reachback and information sciences capabilities
 - High performance computing
- Architectures for prompt access and low latency
- Beyond physics
 - Human behavior and intent detection
 - Social network analysis

BAAs and SBIRs

BAAs:

ARL Postdoc Fellowship Program W911NF-11-R-0010

RDECOM-STTC W91CRB-08-R-0073

ARO W911NF-07-R-0003-04

ARL/ARO W911NF-07-R-0001-05

DARPA DARPA-11-34: I2O Office-Wide BAA

AFOSR AFOSR-BAA-2009-1

AFOSR AFOSR-BAA-2011-01

DHS DHSS-TLRBAA11-03

DTRA HDTRA1-11-16-RDIS-BAA

DTRA HDTRA1-11-16-BRCWMD-BAA

ONR BAA 12-001

also Special Notice 11-SN-0004 under this BAA, titled "Data to Decision"

SBIRs:

Army: https://www.armysbir.army.mil/default.aspx

DoD: http://dodsbir.net/solicitation/default.htm

CWMD Summary

- Capability against loose nukes needs improvement
 - There is no silver bullet
 - Heavy reliance on early cue
- Radiation detection alone is not enough
- Many other signatures/sensors can be brought to bear
 - Substantial capability already exists
 - But data needs to be integrated
- Sensor handoff/sensor fusion/network fusion essential
- Opportunities in ISR for persistent surveillance, tracking, and broad area search in scenario-specific architectures
- Greatest gains may be in automating synthesis of sensor data, intel analysis, all networks including social networks, and nonphysics based detection of behavior and intent